Mean Value Theorem

V. M. Sholapurkar Department of Mathematics, S. P. College, Pune

August 3, 2021

• Rolle (1652-1719) was a French Mathematician

- Rolle (1652-1719) was a French Mathematician
- Experiment

- Rolle (1652-1719) was a French Mathematician
- Experiment
- Draw a graph of a smooth function on [a, b] such that f(a) = f(b).

- Rolle (1652-1719) was a French Mathematician
- Experiment
- Draw a graph of a smooth function on [a, b] such that f(a) = f(b).
- Draw tangents to points at various points on the graph

- Rolle (1652-1719) was a French Mathematician
- Experiment
- Draw a graph of a smooth function on [a, b] such that f(a) = f(b).
- Draw tangents to points at various points on the graph
- What do you observe? Write in terms of the slopes of the tangents

- Rolle (1652-1719) was a French Mathematician
- Experiment
- Draw a graph of a smooth function on [a, b] such that f(a) = f(b).
- Draw tangents to points at various points on the graph
- What do you observe? Write in terms of the slopes of the tangents
- Formulate the Statement of the theorem

smooth

40) 40) 45) 45) B 990

If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) and if f(a) = f(b), then there is a $c \in (a,b)$ such that f'(c) = 0.

Proof.

Recall that a continuous function on a closed and bounded interval is bounded and attains its bound.

If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) and if f(a) = f(b), then there is a $c \in (a,b)$ such that f'(c) = 0.

Proof.

Recall that a continuous function on a closed and bounded interval is bounded and attains its bound.

So let sup and inf be attained at points x_0 and y_0 respectively.

If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) and if f(a) = f(b), then there is a $c \in (a,b)$ such that f'(c) = 0.

Proof.

Recall that a continuous function on a closed and bounded interval is bounded and attains its bound.

So let sup and inf be attained at points x_0 and y_0 respectively. Case 1: Suppose $a=x_0$ and $b=y_0$. In this case, the condition f(a)=f(b) implies that $\sup f=\inf f$ on [a,b] so that f is a constant and f'(x)=0, $\forall x\in [a,b]$.

$\mathsf{Theorem}$

If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) and if f(a) = f(b), then there is a $c \in (a,b)$ such that f'(c) = 0.

Proof.

Recall that a continuous function on a closed and bounded interval is bounded and attains its bound.

So let sup and inf be attained at points x_0 and y_0 respectively.

Case 1: Suppose $a = x_0$ and $b = y_0$. In this case, the condition f(a) = f(b) implies that $\sup f = \inf f$ on [a, b] so that f is a constant and f'(x) = 0, $\forall x \in [a, b]$.

Case 2: Suppose $x_0 \in (a, b)$.

If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) and if f(a) = f(b), then there is a $c \in (a,b)$ such that f'(c) = 0.

Proof.

Recall that a continuous function on a closed and bounded interval is bounded and attains its bound.

So let sup and inf be attained at points x_0 and y_0 respectively.

Case 1: Suppose $a = x_0$ and $b = y_0$. In this case, the condition f(a) = f(b) implies that $\sup f = \inf f$ on [a, b] so that f is a constant and f'(x) = 0, $\forall x \in [a, b]$.

Case 2: Suppose $x_0 \in (a, b)$. In this case, $f(x_0)$ being $\sup\{f(x): a \le x \le b\}$, we have $f'(x_0) = 0$.

• Consider the function defined by f(x) = x on [0,1) and f(1) = 0 Then f is differentiable on (0,1) and f(0) = f(1), but f'(x) = 1, $\forall x \in (0,1)$.

• Consider the function defined by f(x) = x on [0,1) and f(1) = 0 Then f is differentiable on (0,1) and f(0) = f(1), but f'(x) = 1, $\forall x \in (0,1)$. Note that f is not continuous at x = 1.

- Consider the function defined by f(x) = x on [0,1) and f(1) = 0 Then f is differentiable on (0,1) and f(0) = f(1), but f'(x) = 1, $\forall x \in (0,1)$. Note that f is not continuous at x = 1.
- The function f(x) = ||x|| is continuous on [-1,1] and f(1) = f(-1), but there is no $c \in (-1,1)$ such that f'(c) = 0.

10/10/12/13

- Consider the function defined by f(x) = x on [0,1) and f(1) = 0 Then f is differentiable on (0,1) and f(0) = f(1), but f'(x) = 1, $\forall x \in (0,1)$. Note that f is not continuous at x = 1.
- The function f(x) = ||x|| is continuous on [-1,1] and f(1) = f(-1), but there is no $c \in (-1,1)$ such that f'(c) = 0. Here, f is not differentiable at x = 0.

- Consider the function defined by f(x) = x on [0,1) and f(1) = 0 Then f is differentiable on (0,1) and f(0) = f(1), but f'(x) = 1, $\forall x \in (0,1)$. Note that f is not continuous at x = 1.
- The function f(x) = ||x|| is continuous on [-1,1] and f(1) = f(-1), but there is no $c \in (-1,1)$ such that f'(c) = 0. Here, f is not differentiable at x = 0.
- The function f(x) = x is continuous on [0,1] and differentaible on (0,1) but $f'(x) = 1, \ \forall x \in (0,1)$.

- Consider the function defined by f(x) = x on [0,1) and f(1) = 0 Then f is differentiable on (0,1) and f(0) = f(1), but f'(x) = 1, $\forall x \in (0,1)$. Note that f is not continuous at x = 1.
- The function f(x) = ||x|| is continuous on [-1,1] and f(1) = f(-1), but there is no $c \in (-1,1)$ such that f'(c) = 0. Here, f is not differentiable at x = 0.
- The function f(x) = x is continuous on [0,1] and differentaible on (0,1) but f'(x) = 1, $\forall x \in (0,1)$. Here $f(0) \neq f(1)$.

Applications of Rolle's Theorem

:410=0

= 3(2+b=0

312 = -P

(ontradicte

Prove that a cubic polynomial of the form $f(x) = x^3 + px + q, \quad p > 0 \text{ has a unique real root.}$

> Bedween 2 mok g 5 there is a root of tl

Suppure

Applications of Rolle's Theorem

2 Prove that a polynomial of degree n with real coefficients induction. have at most n roots in \mathbb{R} .

Applications of Rolle's Theorem

- Prove that a cubic polynomial of the form $x^3 + px + q$, p > 0 has a unique real root.
- ② Prove that a polynomial of degree n with real coefficients have at most n roots in \mathbb{R} .
- Prove that the equation $2x 1 = \sin x$ has exactly one solution.

Lagrange's Mean Value Theorem

Theorem

If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) then there is a $c\in(a,b)$ such that $f'(c)=\frac{f(b)-f(a)}{b-a}$.

Lagrange's Mean Value Theorem

the prod the prod the prod construction

If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) then there is a $c\in(a,b)$ such that $f'(c)=\frac{f(b)-f(a)}{b-a}$.

Proof.

Define
$$g(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}\right)x$$

Proof.

Define
$$g(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}\right)x$$

Then observe that g satisfies the conditions of the Rolle's theorem.

Check +nat 9(a)=9(b)

Proof.

Define $g(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}\right)x$

Then observe that g satisfies the conditions of the Rolle's theorem. So there exists a point $c \in (a, b)$ such that g'(c) = 0.

Proof.

Define $g(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}\right)x$

Then observe that g satisfies the conditions of the Rolle's theorem. So there exists a point $c \in (a, b)$ such that g'(c) = 0.

Thus

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

(owpane)

Proof.

Define $g(x) = f(x) - (\frac{f(b) - f(a)}{b - a})x$ Then observe that g satisfies the conditions of the Rolle's theorem. So there exists a point $c \in (a, b)$ such that g'(c) = 0.

Thus

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

The auxillary function constructed in the proof of Lagrange's theorem can also be chosen as :

theorem can also be chosen as:

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(a) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(a) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(a) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(a) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(a) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(a) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(a) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(a) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(a) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(a) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) - [f(a) + \frac{f(a) - f(a)}{b - a}(x - a)]$$

$$F(x) = f(x) -$$

Cauchy's Mean Value Theorem.

Theorem

Let f and g be continuous on [a, b] and differentiable on (a, b). If $g'(x) \neq 0 \ \forall x \in (a,b)$, then there is a number $c \in (a,b)$ such that

$$\left[\frac{f(b)-f(a)}{g(b)-g(a)}\right]=\frac{f'(c)}{g'(c)}$$

Proof.

Apply Rolle's theorem to the function

$$h(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x).$$

Venty-

$$h(a) = h(b)$$

(日) (日) (日) 日 りへの

 Rolle's, Lagranges's and Cauchy's theorems are mutually equivalent

- Rolle's, Lagranges's and Cauchy's theorems are mutually equivalent
- If we put b = a + h, then the Mean Value Theorem can be stated in the form:

$$f(a+h)=f(a)+hf'(a+\theta h), \quad 0 < \theta < 1$$

$$f(0+h) - f(d)$$

$$= h f'(a+0h)$$

$$(b-a)$$

- Rolle's, Lagranges's and Cauchy's theorems are mutually equivalent
- If we put b = a + h, then the Mean Value Theorem can be stated in the form:

$$f(a+h)=f(a)+hf'(a+\theta h), \quad 0<\theta<1$$

• Apply Mean Value Theorem to functions $1, x, x^2$ and check that in each case

$$\frac{f(y)-f(x)}{y-x}=\frac{f'(y)+f'(x)}{2},\ \forall x,y\in\mathbb{R}$$

- Rolle's, Lagranges's and Cauchy's theorems are mutually equivalent
- If we put b = a + h, then the Mean Value Theorem can be stated in the form:

$$f(a+h) = f(a) + hf'(a+\theta h), \quad 0 < \theta < 1$$

• Apply Mean Value Theorem to functions $1, x, x^2$ and check that in each case

$$\frac{f(y)-f(x)}{y-x}=\frac{f'(y)+f'(x)}{2},\ \forall x,y\in\mathbb{R}$$

• The above equation holds for any quadratic polynomial and interestingly, the converse holds!

If f
salities
the equality
from f is
quadrake
polynamial

4 D F 4 B F 4 B F

Standard Applications

$$f_{(1,2)} = f_{(3,1)}$$

$$= f_{(1,2)} - f_{(3,1)}$$

$$= f_{(1,2)} - f_{(3,1)}$$

$$= f_{(1,2)} - f_{(3,1)}$$

- If f is differentiable on (a, b) such that $f'(x) = 0 \ \forall x \in (a, b)$, then f is constant on (a, b).
- If f is differentiable on (a, b) such that $f'(x) > 0 \ \forall x \in (a, b)$,
- then f is increasing on (a, b). • If f is differentiable on (a, b) such that $f'(x) < 0 \ \forall x \in (a, b)$,
- then f is decreasing on (a, b). • If f is differentiable on (a, b) and there exist m, M such that

then
$$f$$
 is decreasing on (a, b) .

If f is differentiable on (a, b) and there exist m, M such that

$$m \leq f'(x) \leq M \quad \forall x \in (a, b), \text{ then}$$

$$m(b-a) \leq f(b) - f(a) \leq M(b-a)$$

$$d(b) - f(a) = (b-a) f'(c)$$
The quality

$$m(b-a) \leq (b-a) M$$

έż,

+(12)-f(1,)

= 4(4) (153)

Examples

Prove that
$$|\cos x - \cos y| \le |x - y|$$
, $\forall x, y \in \mathbb{R}$

If $x > 0$, prove that $\frac{x}{1+x} < \log(1+x) < x$

If f is continuous on $[0,2]$ and twice differentiable on $(0,2)$ and if If $f(0) = 0$; $f(1) = 1$ and $f(2) = 2$; then show that there exists x_0 such that $f^{(2)}(x_0) = 0$.

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - \cos y| \le |x - y|$$

$$|\cos x - y|$$

Examples

- **1** Prove that $|\cos x \cos y| \le |x y|, \ \forall x, y \in \mathbb{R}$
- 2 If x > 0, prove that $\frac{x}{1+x} < \log(1+x) < x$
- **3** If f is continuous on [0,2] and twice differentiable on (0,2) and if If f(0) = 0; f(1) = 1 and f(2) = 2; then show that there exists x_0 such that $f^{(2)}(x_0) = 0$.
- **4** Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f' is a decreasing function. If a, b, c are real numbers with a < c < b, prove that $(b-c)f(a) + (c-a)f(b) \le (b-a)f(c)$.

Examples

- **1** Prove that $|\cos x \cos y| \le |x y|$, $\forall x, y \in \mathbb{R}$
- ② If x > 0, prove that $\frac{x}{1+x} < \log(1+x) < x$
- TVM + 617 MO < 17 169 4 \bullet If f is continuous on [0,2] and twice differentiable on (0,2)and if If f(0) = 0; f(1) = 1 and f(2) = 2; then show that there exists x_0 such that $f^{(2)}(x_0) = 0$.
- Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f' is a mut den [a, c] & [c, b] tuse of decrease decreasing function. If a, b, c are real numbers with a < c < b, prove that (b-c)f(a) + (c-a)f(b) < (b-a)f(c).
- **5** Let f be a function, continuous on [a, b] and differentiable on (a,b). Let α be a real number. If f(a)=f(b), then prove that there exists $x_0 \in (a, b)$ such that $\alpha f(x_0) + f'(x_0) = 0$.

consmet $g(x) = e^{x} f(x)$

Exercises

- Suppose that f is differentiable on \mathbb{R} and that f(0) = 1, f(1) = 1 and f(2) = 1. Show that (i) $f'(x) = \frac{1}{2}$ for some $x \in (0, 2)$. (ii) $f'(x) = \frac{1}{7}$ for some $x \in (0, 2)$.
- $\textbf{ 0 Use MVT to prove that } \frac{27}{16} < \sqrt{3} < \frac{7}{4} \text{ and } \frac{20}{9} < \sqrt{5} < \frac{9}{4}$
- Show that the cubic $2x^3 + 3x^2 + 6x + 10$ has exactly one real root.
- Find

$$\lim_{x \to \infty} x^2 (\tan^{-1}(x+1) - \tan^{-1}(x)) \longrightarrow (+ \alpha n^{-1} x)$$

$$= \frac{1}{1+x^2}$$

References

- Ghorpade and Limaye, A Course in Calculus and Analysis, Springer, 2006
- K. Ross, Elementary Analysis: The Theory of Calculus, Springer. 1980
- Bartle and Sherbert, Introduction to Real Analysis, Wiley Student Edition, 2005
- 4 Ajit Kumar and Kumaresan, Real Analysis, CRC Press, 2014