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Rolle's Theorem

e Rolle (1652-1719) was a French Mathematician

V. M. Sholapurkar Department of Mathematics, S. P. College, Mean Value Theorem



Rolle's Theorem

e Rolle (1652-1719) was a French Mathematician
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Rolle's Theorem

o Rolle (1652-1719) was a French Mathematician
o Experiment

e Draw a graph of a smooth function on [a, b] such that
f(a) = f(b). —
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Rolle's Theorem

Rolle (1652-1719) was a French Mathematician

Experiment

e Draw a graph of a smooth function on [a, b] such that
f(a) = f(b).
Draw tangents to points at various points on the graph
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Rolle's Theorem

Rolle (1652-1719) was a French Mathematician

Experiment

e Draw a graph of a smooth function on [a, b] such that
f(a) = f(b).
Draw tangents to points at various points on the graph

What do you observe ? Write in terms of the slopes of the
tangents
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Rolle's Theorem

e Rolle (1652-1719) was a French Mathematician

e Experiment

e Draw a graph of a smooth function on [a, b] such that
f(a) = f(b).

e Draw tangents to points at various points on the graph

e What do you observe 7 Write in terms of the slopes of the
tangents

o Formulate the Statement of the theorem
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If f : [a, b] — R is continuous on |a, b] and differentiable on (a, b)
and if f(a) = f(b), then there is a c € (a, b) such that f'(c) = 0.

Proof.

Recall that a continuous function on a closed and bounded interval
is bounded and attains its bound.
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If f : [a, b] — R is continuous on |a, b] and differentiable on (a, b)
and if f(a) = f(b), then there is a c € (a, b) such that f'(c) = 0.

Proof.

Recall that a continuous function on a closed and bounded interval
is bounded and attains its bound.
So let sup and inf be attained at points xg and yy respectively.
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If f : [a, b] — R is continuous on |a, b] and differentiable on (a, b)
and if f(a) = f(b), then there is a c € (a, b) such that f'(c) = 0.

Proof.

Recall that a continuous function on a closed and bounded interval
is bounded and attains its bound.

So let sup and inf be attained at points xg and yy respectively.
Case 1: Suppose a = xg and b = yg. In this case, the condition
f(a) = f(b) implies that sup f = inf f on [a, b] so that f is a
constant and f'(x) =0, Vx € [a, b].
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If f : [a, b] — R is continuous on |a, b] and differentiable on (a, b)
and if f(a) = f(b), then there is a c € (a, b) such that f'(c) = 0.

Proof.

Recall that a continuous function on a closed and bounded interval
is bounded and attains its bound.

So let sup and inf be attained at points xg and yy respectively.
Case 1: Suppose a = xg and b = yg. In this case, the condition
f(a) = f(b) implies that sup f = inf f on [a, b] so that f is a
constant and f'(x) =0, Vx € [a, b].

Case 2: Suppose xg € (a, b).
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If f : [a,b] = R is continuous on [a, b] and differentiable on (a, b)
and if f(a) = f(b), then there is a c € (a, b) such that f'(c) = 0.

Proof.
Recall that a continuous function on a closed and bounded interval
is bounded and attains its bound.

So let sup and inf be attained at points xg and yg respectively.
Case 1: Suppose a = xg and b = y;. In this case, the condition
f(a) = f(b) implies that sup f = inf f on [a, b] so that f is a
constant and f/(x) = 0, Vx € [a, b].

Case 2: Suppose xp € (a, b). In this case, f(xp) being

sup{f(x) : a < x < b}, we have f'(xg) = 0.
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The Conclusion of the Rolle's theorem does not hold if any one of
the conditions is dropped.
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The Conclusion of the Rolle’s theorem does not hold if any one of
the conditions is dropped.

o Consider the function defined by f(x) = x on [0,1) and
f(1) = 0 Then f is differentiable on (0,1) and £(0) = (1),
but f'(x) =1, ¥x € (0,1).

V. M. Sholapurkar Department of Mathematics, S. P. College, Mean Value Theorem



The Conclusion of the Rolle's theorem does not hold if any one of
the conditions is dropped.
o Consider the function defined by f(x) = x on [0,1) and
f(1) = 0 Then f is differentiable on (0,1) and f(0) = f(1),
but f’(x) =1, Vx € (0,1). Note that f is not continuous at
x=1.
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The Conclusion of the Rolle’s theorem does not hold if any one of

the conditions is dropped. - ))
o Consider the function defined by f(x) = x on [0,1) and

f(1) =0 Then f is differentiable on (0,1) and £(0) = (1),

but f/(x) =1, Vx € (0,1). Note that f is not continuous at

x=1.

[ % ( o The function f(x) = ||x|| is continuous on [—1,1] and
f(1) = f(—1), but there is no ¢ € (—1,1) such that
f'(c) =0.
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The Conclusion of the Rolle's theorem does not hold if any one of
the conditions is dropped.
o Consider the function defined by f(x) = x on [0,1) and
f(1) = 0 Then f is differentiable on (0,1) and f(0) = f(1),
but f’(x) =1, Vx € (0,1). Note that f is not continuous at
x =1
e The function f(x) = ||x|| is continuous on [—1,1] and
f(1) = f(—1), but there is no ¢ € (—1,1) such that
f'(c) = 0. Here, f is not differentiable at x = 0.
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The Conclusion of the Rolle's theorem does not hold if any one of
the conditions is dropped.
o Consider the function defined by f(x) = x on [0,1) and
f(1) = 0 Then f is differentiable on (0,1) and f(0) = f(1),
but f'(x) =1, Vx € (0,1). Note that f is not continuous at

x =1
e The function f(x) = ||x|| is continuous on [—1,1] and ~
f(1) = f(—1), but there is no ¢ € (—1,1) such that j(-fb) -0

f'(c) = 0. Here, f is not differentiable at x = 0.

e The function f(x) = x is continuous on [0, 1] and

differentaible on (0,1) but '(x) =1, Vx € (0,1). 0] q

(0 ~ |
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The Conclusion of the Rolle's theorem does not hold if any one of
the conditions is dropped.

o Consider the function defined by f(x) = x on [0,1) and
f(1) = 0 Then f is differentiable on (0,1) and f(0) = f(1),
but f’(x) =1, Vx € (0,1). Note that f is not continuous at
x =1

e The function f(x) = ||x|| is continuous on [—1,1] and
f(1) = f(—1), but there is no ¢ € (—1,1) such that
f'(c) = 0. Here, f is not differentiable at x = 0.

e The function f(x) = x is continuous on [0, 1] and
differentaible on (0,1) but f'(x) =1, Vx € (0,1). Here
£(0) # £(1).
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Applications of Rolle's Theorem

£16) Juppue £ ba 27

= A =2 \“}'L : f:g CubiC
’g( 0= (% (1) P?r)'ove that a cubic Polynomia! of the form % 4 0\0& *
{_'(x)z !‘M - X+ px+q, ,Lz___> 0 has a unique real root. e d.,Q ’b’\l""}‘
:3‘()(:'-190 Bdweeou
c;f ('L—vb’-" 2 etk
. § Haew
3¢ -P 5ot

(ovdnallicty of £/

Mean Value Theorem

V. M. Sholapurkar Department of Mathematics, S. P. College,




Applications of Rolle's Theorem

v n-f
= X
QX 4 Gy X o o a4 x wa, = P
‘ .
b(x) 15 AN
\ \ tb- @ Prove that a cubic polynomial of the form .)c{'\tt by
o\ PD o x3 4 px+q, p> 0 has a unique real root. =V \, f(ﬂ'-'— (>
A _|) @ Prove that a polynomial of degree n with real coefficients ‘[’ (QOzo
i (n

have at most n roots in R. - Mp’).a, 1'1;\0(\&(_)\'01/\ .
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Applications of Rolle's Theorem

@ Prove that a cubic polynomial of the form
x3 4+ px+gq, p >0 hasa unique real root.

@ Prove that a polynomial of degree n with real coefficients

oA ¥\ have at most n roots in R.

© Prove that the equation 2x — 1 = sin x has exactly one

(09'1" 2 solution.
¢ ot Wwe  ownpt hovg  fa) = 5(6)
v -0
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Lagrange's Mean Value Theorem

If f : [a, b] — R is continuous on [a, b] and differentiable on (a, b)
b)—f(a)

then there is a ¢ € (a, b) such that f'(c) = ut -

—a
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Lagrange's Mean Value Theorem

(‘VV\Q’H\WR Y Iff:[a,b] - R is continuous on [a, b] and differentiable on (a, b)
Q then there is a ¢ € (a, b) such that f'(c) = M.

—a
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Define g(x) = f(x) — (%:(a))x
- —Q(x) ¢ ’

(&( e {ft))
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Define g(x) = f(x) — (%)x

a
Then observe that g satisfies the conditions of the Rolle’s theorem.
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Chocl

h O\j- Define g(x) = f(x) — (%)x
Then observe that g satisfies the conditions of the Rolle's theorem.

%;( q\ - ‘d’ (b) So there exists a point ¢ € (a, b) such that g’(c) = 0.
. __
—
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Define g(x) = f(x) — (%)x
Then observe that g satisfies the conditions of the Rolle’s theorem.
So there exists a point ¢ € (a, b) such that g’(c) = 0.
Thus
b) — f(a)

(e = f(bT'

V. M. Sholapurkar Department of Mathematics, S. P. College, Mean Value Theorem



AW e b (W&AN/V\Q tﬂn\lﬂ

Define g(x) = f(x) — (%)x

Then observe that g satisfies the conditions of the Rolle's theorem.
So there exists a point ¢ € (a, b) such that g’(c) = 0.

Thus

f(b)— f(a)

— &

f'(c) =

The auxillary function constructed in the proof of Lagrange’'s
theorem can also be chosen as :

f(b) f(a) fb) = f(a)

F(x) = f(x) = [f(a) + a)l

Fcozo W
W r‘m"f
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Cauchy's Mean Value Theorem.

Let f and g be continuous on [a, b| and differentiable on (a, b). If
g'(x) # 0 Vx € (a, b), then there is a number c € (a, b) such that

f(b) - f(a)] _f'l9)

gb)—e(@) g0 «
/. Tk'm =0

Apply Rolle’s theorem to the function I

h(x) = [f(b) — f(a)le(x) — [g(b) — g(a)]f(x).

Aw'”tm('
Auneckon,
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RS L > C o Rolle’s, Lagranges's and Cauchy's theorems are mutually

\y equivalent
tu QI
edh - Anadyo s
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o Rolle’s, Lagranges's and Cauchy’s theorems are mutually

equivalent
b o If we put b= a+ h, then the Mean Value Theorem can be
\ stated in the form:
fro th) - §/d) fla+ h)=f(a)+hf'(a+6h), 0<6<1
pr—

- W —g‘ (04-‘9“‘)

[ c

(b-a)
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o Rolle’s, Lagranges’'s and Cauchy's theorems are mutually
equivalent

o If we put b = a+ h, then the Mean Value Theorem can be
stated in the form:

fla+h)=f(a)+hf'(a+0h), 0<O<1 7L(
)():
o Apply Mean Value Theorem to functions 1, x, x2 and check G X +bX+C
that in each case _—
22 Fly)—f(x) _ Fy)+f(x) 29 +2%
LHS y-1 = , Vx,y € R
y—x 2
2
\9—)(_
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e Rolle's, Lagranges's and Cauchy's theorems are mutually
equivalent

o If we put b = a+ h, then the Mean Value Theorem can be
stated in the form:

f(a+ h) = f(a)+ hf'(a+6h), 0<B<1

o Apply Mean Value Theorem to functions 1, x, x2 and check

that in each case I :" ‘e

)= f0) _ PO+ o " {“”’l;tf”g‘,,y

y—x 2
FR"QV\ 'é‘ T

e The above equation holds for any quadratic polynomial and q-uo\ A/(&}\C
interestingly, the converse holds ! Po]jnma
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Standard Applications
- i I —

T 12 b o If f is differentiable on (a, b) such that f'(x) =0 Vx € (a, b), 2 2>
then f is constant on (a, b).
’? (42) -'{((‘) o If f is differentiable on (a, b) such that f/(x) > 0 Vx € (a, b), Jf(”-) —‘F(Y’ )
- &I(Q (1{1| then f is increasing on (a, b). = ~ ‘S"((\ (,‘_-( )
- 0 \ o If f is differentiable on (a, b) such that f/(x) <0 Vx € (a, b), — ’__'
= {_{'ﬂ] then f is decreasing on (a, b). -_
t('"‘b - o If f is differentiable on (a, b) and there exist m, M such that D +(’2>>‘{f'3)

m < f'(x) < M Vx € (a,b), then

Moan Vadue
'qu_q\/\dg/'"’_‘f

m(b— a) < f(b)— f(a) < M(b— a)
SO =f@a) = Cb-a) £()
wlh-Ne (o= () 2 (h-\ M
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MVT

A }
© Prove that [cosx —cosy| < |x — y|, Vx,y €R ,{“;al.{-(x);[og
@ If x > 0, prove that 2= < log(1 +x) < x V7 XJ
. . b =7 . 1 [\ \r
@ If f is continuous on [0,2] and twice differentiable on (0,2) ) x>D

Ny and if If f(0) = 0; f(1) = 1 and f(2) = 2; then show that there
exists xp such that f()(xo) = 0.

=6
HAZC oix _(osH :/vw (q\\(x,m mv' T
e

| :
3 BRSPS ) VI
-
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©

Prove that [cosx — cosy| < [x — y|, Vx,y € R

If x > 0, prove that {7 < log(1 + x) < x

If f is continuous on [0, 2] and twice differentiable on (0, 2)
and if If f(0) = 0; f(1) = 1 and f(2) = 2; then show that there
exists xo such that £(2)(xg) = 0.

Let f : R — R be a differentiable function such that f’ is a
decreasing function. If a, b, ¢ are real numbers with

a < ¢ < b, prove that

(b—c)f(a) + (c—a)f(b) < (b—a)f(c).
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©

Prove that |cosx — cosy| < |x — y|, Vx,y € R
If x >0, prove that 25 < log(1 +x) < x

P = O AN T
If f is continuous on [0, 2] and twice differentiable on (0, 2)
and if IF £(0) = 0: £(1) — 1 and £(2) = 2; then show that there > 0N Lo,iJ 4 ’]'
exists xg such that £(2)(x5) = 0. L QMg cHm b -‘-
Let f : R — R be a differentiable function such that ' is a

decreasing function. If a, b, ¢ are real numbers with T an ):G (] & EC 51

a < ¢ < b, prove that —__5 .
(b— c)f(a) + (c — a)f(b) < (b— a)f(c). kue § Aeorun

Let f be a function, continuous on [a, b] and differentiable on MIUI‘
(a, b). Let « be a real number. If f(a) = f(b), then prove oanc oy
that th ist , b) such that of f'(x0) = 0.

at there exists xp € (a, b) such that af(xg) + f'(xo) ?(x) =) {_(x)
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Exercises

@ Suppose that f is differentiable on R and that
f(0)=1,f(1) =1 and f(2) = 1. Show that (i) f'(x) = 3 for

some x € (0,2). (i) f/(x) = 1 for some x € (0,2). ‘FM
27 20 my T {o
@ Use MVT to prove that — < \/_< —and = < VB <
16 9 -\)-;(
@ Show that the cubic 2x3 4 3x? + 6x + 10 has exactly one real
root.
O Find (J(aw X)
lim x2(tan(x+1) - tani(x)) = 2
X—00

;—___
-—

1ex®
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